Benefits of Modern-Day Combustion Safety Testing: Realtime vs Steady State

Casey Contreras National Comfort Institute caseyc@ncihvac.com

Tyler Nelson Sauermann tyler.nelson@sauermanngroup.com

Content and illustrations © NCI, Inc. 2024

Preview

- Safety first
- Importance of modern-day tools
- Steady state + Real time
- Missed combustion safety
- Next steps

Personal CO "Safety First"

- Your safety comes first
- All spaces monitored for CO
- Space testing only guarantees your immediate safety
- Personal CO alarms are mandatory

Test with Analyzers all the time, not just when YOU want.

Combustion Analysis

- As-Measured CO (pattern and level)
- Oxygen (pattern and level)
- Flue temperature
- Draft

When should you measure

- Maintenance
- Commissioning
- Comfort complaints
- No heat calls after repairs.
- Sales calls
- Reports of sickness

Here's Why

Safety

Liability Missed opportunity Comfort Efficiency Happy customers Increase in revenue Health **Reduced warranty**

9 Reasons To Test Combustion

Evolution of Combustion Test Instruments

Early:

Fyrite Bottles

Thermometers

Digital Analyzers

Si-CA 030 Combustion Analyzer

Residential and Light Commercial analyzer

- Up to **Three Gas Sensors**
- O₂, CO, and NO (for NOx)
- CO Sensor measures up to 8000 ppm
- Auto pump Cut-Off for High CO levels
- Quick & easy Pump On/Off control
- Color Display screen

Si-CA 130 Combustion Analyzer

Residential and Commercial analyzer

- Up to **Three Gas Sensors**
- **O**₂, CO, and NO <u>or</u> Low NO (for NOx)
- Large color **touch screen** with zoom & graphical view
- Field Replaceable pre-calibrated gas sensors
- CO Sensor measures up to 8000 ppm
- Data management with automatic logging and report creation

Si-CA 230 Combustion Analyzer

Industrial, Commercial and Residential Analyzer

• Up to <u>Six</u> Gas Sensors

sauermann

- O₂, CO, NO, Low NO, NO₂, Low NO₂, SO₂, Low SO₂, H₂S, & CxHy
- CO Dilution auto-range with measurements to 50,000 ppm
- iOS and Android Mobile Apps for real-time display & control
- Large color **touch** Screen with zoom & graphing
- Field Replaceable pre-calibrated gas sensors
- Superior Hose Material will <u>not</u> affect NO₂, SO₂, and H₂S measurements

Sauermann has partnered with measureQuick!!

Sauermann[®]

National Comfort Institute. Inc

Kits for Each Analyzer

Si-CA 030 → Kits consist of gas sensors (2 or 3 with NO), probe (180mm or 300mm), and case (Cardboard Box, Soft Vinyl Case, or hard ABS plastic case). *Option for daughter board needed for CO/CO2 probes.

Si-CA 130 → Kits consist of gas sensors (2 or 3 with NO or Low NO as 3rd one), probe (180mm or 300mm), and case (soft vinyl case or hard ABS plastic case). *Option for high accuracy draft sensor.

Si-CA 230 → Kits determined by number of gas sensors (from 2 up to 6) and which gas sensors (O2, CO, NO, Low NO, NO2, Low NO2, SO2, Low SO2, CxHy/HC, & H2S). All kits include 300mm probe & hard ABS plastic case. *Option for high accuracy draft sensor.

Many optional accessories (printer, longer probes, hose extension, etc.) available for all analyzers & kits

Steady State Efficiency:

The calculated efficiency of fuel burning equipment operating at **full input** and at **full load** conditions in a fixed environment (lab conditions)

The efficiency of a piece of equipment after **10 minutes** of field operating time **regardless of input or load.**

- Smoke test on natural draft (within the first 60 sec) a mirror can be used to.
- Allow the unit to run for 10 minutes let flue temperatures stabilize
- 10 to 15 minutes grab a carbon monoxide Reading
 What's the difference between 99 ppm and 150 ppm or 5 ppm to 50 ppm

Three Stages of Combustion Diagnostics

Light-Off – CO only (First 60 seconds of burner operation).

Run Cycle – Three CO and O₂ readings within a minimum of five minutes (or longer if needed) of operation. Flue temperature and draft are recorded with your third set of readings.

Shut-Down – CO only (60 seconds after burner operation ends).

4 Diagnostics missed by testing under steady state.

Light off –

- Shows up as a rise in Carbon monoxide and peaks out then falls. **Venting Issues**
- Shows up as rising carbon monoxide and falling oxygen with high draft.
 Combustion Air –
- Issues show up as rising carbon monoxide and falling oxygen with no draft.
 Bad Gas Valves –
- Shows up as **rising carbon monoxide** after the flame goes out.

Steady State + Real Time

- Measure every cycle watch it for 10 min
- Get your steady state measurements + safety problems

All testing is done in the flue with an analyzer.

80% Induced Furnace

90% Furnace Condensing

Water Heater

Draft Test Locations

Draft gauge should be inserted above draft hood or diverter.

Test ports should be drilled 18"-24" above appliance so gauge hangs unobstructed.

Design draft is between - 0.01" w.c. and -0.02" w.c.

Condensing furnaces do not require a draft test.

Light-Off Natural Draft Equipment (Draft hood):

CO should not exceed 400 ppm in the first 60 seconds of burner operation.

Light-Off:	0 sec	10 secs	20 secs	30 secs	40 secs	50 secs	60 secs
CO	0 ppm	10 ppm	100 ppm	400 ppm	600 ppm	300 ppm	100 ppm

Light-Off

Induced Draft Equipment (80% and 90%):

CO should not exceed 1000 ppm in the first 60 seconds of burner operation.

Light-Off:	0 sec	10 secs	20 secs	30 secs	40 secs	50 secs	60 secs
СО	0 ppm	30 ppm	200 ppm	800 ppm	1200 ppm	600 ppm	200 ppm

Problems indicated by excessive CO during the first 60 seconds of burner operating.

Light-Off indicates how quickly and effectively all burners ignite

Shutdown Problems

Shut-down:	0 sec	10 secs	20 secs	30 secs	40 secs	50 secs	60 secs
СО	30 ppm	30 ppm	40 ppm	60 ppm	80 ppm	100 ppm	60 ppm

When the call for heat is satisfied and the flames goes out there should be a **fall** in the **CO** reading, from time to time you will find **CO rising**. The **rising CO** at **shutdown** is an indicator for how poor that fuel value is closing.

- Problems are identified as the equipment operates through CO, O₂, flue temperature, and draft measurements.
- Readings help determine equipment safety and efficiency issues.
- There are eight potential issues that range from fuel and mechanical issues to venting and combustion air problems

Venting (Drafthood Equipment):

Definition – 100% of the flue gas is not leaving the equipment even though venting system is properly sized and in good condition.

Run Cycle

Combustion Air (Drafthood & Induced Draft 80% Equipment):

Definition – Adequate room air is available for combustion but misdirected from burners due to external influences.

CO Run Cycle:	1 min	2 min	3 min	4 min	5 min
	50	10	11	12	13
O2-Run Cycle:	7.4%	7.3%	7.2%	7.1%	7.0%
Flue Temp:					<u>360°</u>
Draft:					-0.01″
Plenum Temp:					135°

Fan Interference

- Exhaust fans kitchen, clothes dryer, bath, window, whole house
- Duct leakage
- Interior door closure

Natural Building Leakage

- Stack effect
- Wind effect

Restricted Flues

Undersized, restricted, and improperly installed flues will have the same symptoms as a combustion air problem.

They must be uncovered with the Vent Sizing / Restricted Flue Test.

Vent Sizing/Restricted Flue Test

Draft should remain the same Draft Guage and start to fall slowly once the gas valve is turned off. If draft increases for at least 10-15 seconds after the gas valve is turned off, the flue is undersized or restricted and requires repair.

Draft Guage

Combustion Readings

Carbon Monoxide

Equipment/Burner Type	Light-off (First 60 seconds)	Run (After five minutes)	Shutdown (Last 60 seconds*)	
Natural Draft (70%)	Less than 400 ppm	100 ppm and stable	Falling	
Induced Draft (80%)	Less than 1000 ppm	100 ppm and stable	Falling	
Condensing (90%)	Less than 1000 ppm	100 ppm and stable	Falling	

Oxygen (Stable during Run Cycle)

Range
6% to 9% Residential light Commercial Natural Gas, LP (Atmospheric,
Induced Draft)

Next Steps

- 1. Measure ambient CO.
- 2. Learn to identify visual clues.
- 3. Get trained in CO and Combustion Testing.
- 4. Purchase the necessary test equipment.
- 5. Offer low-level CO monitors to your customers.
- 6. Start testing your own work and provide solutions.
- 7. Become the "go-to" company for CO safety.

About NCI

Currently we train over 3,000 industry professionals each year and have certified over 50,000 people since our beginning in 1993.

In addition to innovative business and technical training, we offer memberships with distinctive member benefits.

With a dedicated staff nearly 30 strong, NCI wants to continue to be a resource supporting your ongoing learning and business success.

www.nationalcomfortinstitute.com

FREE **SUBSCRIPTION** HVACtoday.com

