Airflow Testing
Accuracy in the Field

Ben Lipscomb
National Comfort Institute
Pete Jacobs
Building Metrics, Inc.

Content and illustrations © NCI Inc. 2019
Outline

• Why Airflow Measurement Accuracy is Important
• Factors Contributing to Field Measurement Accuracy
• Measurement and Instrument Types
• Specific Accuracy Considerations for Selected Field Measurements

Disclaimer: None of the references to specific manufacturers or products that may be made in this presentation constitute a recommendation by NCI, Inc. or Building Metrics, Inc. for or against purchasing or using the product.
Who We Are, and Why We’re Up Here Together

Pete and Ben are both mechanical engineers, paths have crossed many times over the past few years.

Interested in field HVAC performance measurement, energy efficiency

• Pete from the EM&V side
• Ben from the program design and implementation side

• Both served on the WHPA Commercial Installation Committee
• Currently serve together on the ASHRAE 221P Standard Committee
Importance of Airflow Accuracy

• Of the measurements that go into calculating delivered capacity, airflow...
 • Is least accurate
 • Has the largest potential range of accuracy

<table>
<thead>
<tr>
<th>Field Measurement</th>
<th>Rough Accuracy Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM Airflow</td>
<td>+/-3% to 20%</td>
</tr>
<tr>
<td>Temperature</td>
<td>+/-1% to 2%</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>+/- 2% to 3%</td>
</tr>
</tbody>
</table>

\[BTUh = 4.5 \times CFM \times \Delta h \]
Air Flow Measurements in ASHRAE Standard 221P

• Supply register flow (air delivered into space)
• Outside air flow (air entering the HVAC unit)
Factors Contributing to Accuracy in the Field

- Instrument accuracy
- Building and System Attributes
- Measurement Technique
Field Airflow Measurements and Instruments

• There are many different airflow measurement applications in HVAC

• Requires multiple instruments and techniques

• Each application has its own challenges and accuracy considerations
Our Focus Today

CFM Through Registers and Grilles Using a Capture Hood

CFM Through Ducts Using a Thermal Anemometer or Pitot Tube Traverse
Capture Hood Accuracy

<table>
<thead>
<tr>
<th>Category</th>
<th>Accuracy Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument accuracy</td>
<td>± 3% ± 7 CFM</td>
</tr>
<tr>
<td>Building and System Attributes</td>
<td>May decrease accuracy to ± 10% or more</td>
</tr>
<tr>
<td>Measurement Technique</td>
<td>Can decrease accuracy further to ± 30% or more</td>
</tr>
</tbody>
</table>
Research

• Most of the research to date has come from Laurence Berkeley National Laboratory (Wray et al. 2001, 2002, 2003, 2012)

• In summary the research:
 • Focused on residential airflow measurement applications (i.e. lower flows, smaller registers and grilles)
 • Included some non-commercialized and prototype devices, while excluding many commercially available devices
 • Concludes that fan-powered flow hoods are generally more accurate than non-powered flow hoods
 • Notes field usability issues with powered flow hoods including battery life, complicated setup, weight, and longer measurement times
 • Notes large size and accuracy issues for residential applications with non-powered flow hoods
 • Notes that addition of flow conditioning devices significantly improves accuracy in non-powered flow hoods
 • Recommends establishing a standard for flow hood accuracy that takes includes considerations for actual use in the field
Research cont.

 • Found hood measurements on swirl diffusers biased 56% high compared to measurements with a 4-way or no diffuser
 • Demonstrated positive impacts on accuracy through flow conditioning including screens and barriers perpendicular to flow
Accuracy Throughout Measurement Range

- Industry leading hood has a range of 25 to 2500 CFM
- Accuracy spec is ±3% ±7 CFM
- Accuracy is lower at the lower end of the measurement range
 - ±31% at 25 CFM
 - ±10% at 100 CFM
Field Supply Register Variety

• Hoods typically calibrated in a lab with a single type of register or no register at all
• Wide variety of registers used in real buildings can significantly impact on accuracy
• Manufacturers have started to design ways to compensate
 • Flow conditioning (straightening)
 • Specific calibration by register type

Photos adapted for Fair Use from: http://truaire.com/
Register Impacts

• Some diffusers allow air to flow uniformly over the sensing element and allow hood to work as designed
• Others cause air to flow erratically over the sensing element and cause measurements to be biased either high or low

Whyte et al. CFD simulation of a airflow through a hood from a 4-way diffuser vs. a swirl diffuser: http://eprints.gla.ac.uk/40969/1/40969.pdf
Flow Conditioning

• Multiple manufacturers have begun integrating or selling add-on flow conditioning or straightening devices in their hoods

• TSI/Alnor includes a picture and some data in the owners manual for the EBT731:

Flow Conditioning and Register Type Calibration

• One hood manufacturer has incorporated flow conditioning integral to the design of the hood
• In addition to specific calibration profiles for various types of registers
Resistance to Flow

- Typical hoods with an opening of about 12”x12” don’t cause excessive resistance within typical measurement ranges.
- Hoods with smaller openings can create a large pressure drop when used for higher airflows.
- Restriction through a hood can reduce flow through the grille you’re measuring giving a false measurement.
- The data for an off brand hood with small opening shows error exceeding 20% at flows 600 CFM and higher.
- Manufacturer claims range up to 1200 CFM with airflow velocity accuracy of +/-0.5%.

Graphic: Measured Airflow 150 to 1050 CFM

- Industry Leading Hood
- Mainstream Mfg. Newer Design
- Off Brand Small Hood
Measuring Non-Standard Grilles

• Many registers are 2’x2’ square, and that’s what most hoods are designed for

• Other shapes and sizes require specialized skirts and/or adapters to accurately measure

• Sometimes it’s necessary to field-fabricate adapters
Powered Flow Hoods

Pros
• Flow hoods that include a fan
 • Compensates for restriction caused by the hood
 • Minimizes effect of uneven flow through different types of registers
• Have been shown to be very accurate in low flow and other situations that present accuracy challenges for non-powered hoods

Cons
• Currently only available from 2 overseas manufacturers
• Limited measurement range less than 235 CFM or 500 CFM depending on mfg., limits use on returns and in commercial applications
• Battery to power fan limits working time before recharge and adds weight
Looking to the Future

• Proposed standard method of test for accuracy specifications
• Additional research on field measurement accuracy
 • Include the latest developments in non-powered and powered flow hoods
 • Look at both residential and commercial applications
• Potential further improvements in non-powered flow hoods
 • Further developing and optimizing flow conditioning approaches
 • Expanding and improving register-specific calibration approaches
• Potential further improvements in powered flow hoods
 • Increasing measurement range
 • Longer life, faster charging, lighter weight battery technology
 • Focus on ergonomics and field usability
Why do a duct traverse?

- Measure flow in situations where flow hoods cannot be used
- Need to know duct rather than register airflow
- Develop correction factors for flow hood measurements on non-standard diffusers
- Develop field Ak factors for registers when combined with register traverse
Duct Traverse

• Can be accomplished with a pitot tube or thermal anemometer
Duct Traverse Locations

- 10 Times Duct Diameter Straight Duct
- 8 Times Diameter Duct Down (80%) Straight Duct
- 80% Downstream
- 12"
- 24"
- 36"

NCI
National Comfort Institute, Inc.

AHR EXPO
Atlanta JAN 14-16 2019

National Balancing Council™
Gold Standard Traverse Accuracy +/- 3%

• Fully developed flow
• Multiple measurements
• Measurements relatively uniform
 • ASHRAE 111 criterion: >75% of measurements > 10% of max velocity
• 10 diameters straight run
• Measure at least 8 diameters downstream, 2 diameters upstream of obstruction
• Duct diameter should be at least 30 times the diameter of the Pitot tube.
• Flow parallel to duct wall
Probe Direction

Insert the probe and take velocity readings in feet Per Minute (FPM)
- Hold probe 90° to airflow
- 15° off either way will result in an inaccurate reading

Insert probe maintaining a 90° alignment to air flow

Rotate probe so that sensors are facing the flow of air

Rotate probe to get max velocity
Reality of Field Conditions

• Insufficient straight run
• Non-uniform flow distribution
• Not enough measurements
• Flow not parallel to duct – swirl or eddys
• Fan outlets are the worst
Fully Developed Flow Profile

- Symmetric flow pattern
- Fairly uniform across duct
- Flow parallel to duct wall
- No eddys
- Zero velocity at wall, but goes to near average velocity close to the wall
Flow Near Elbow

- Becomes asymmetric near entrance
- Some reverse flow near exit
- Asymmetry becomes less as downstream distance increases
Flow Profile at Fan Discharge
Measurement of air flow in duct by velocity measurements

Isabelle Care1,a, Francis Bonthoux2 and Jean-Raymond Fontaine2
Traverse Accuracy as Function of Downstream Diameters and Number of Measurements

Number of Measurements

Measurement Accuracy

1 Diameter
2 diameters
3 diameters
4 diameters
5 diameters
6 Diameters
7 diameters
8 diameters
Rectangular Duct

5 traverses
5 readings per traverse
Anemometer Considerations

• Minimum velocity ranges
 • Thermal anemometer – low as 5 fpm; depends on the cost
 • Vane anemometer – 50 fpm typical
 • Pitot tube – 300 fpm typical (depends on manometer)

• Flow direction
 • Vane anemometer will detect flow direction
 • Hot wire won’t pick up negative flows
Shortcut for Small Round Ducts

- It is also possible to take a single reading to measure air velocity or air volume flow in a duct,

- Measuring in the center of the duct and multiplying the reading by 0.9 to correct for the higher velocity at the center. If conditions are very good, an accuracy of ± 5 or 10 percent may be obtained this way.
Air flow measurements – Register traverse

• When a supply register is inaccessible, outside the hood specifications, or in question, an airflow traverse is used to verify the hood reading.

• Supply resisters require a correction factor to correct for air velocity increases through the register.
Outdoor Air

• Technique depends on outdoor conditions
• Calm conditions use a flow matrix or vane anemometer traverse
• Windy conditions use hotwire traverse in the eyebrow
• Research conducted by LBNL for the California Energy Commission recommends anemometer or flow grid measurements
 • Flow grid measurement accuracy +/-15.1% (range 15%-16%)
 • Anemometer measurement accuracy +/-15.8% (range 10% - 22%)
Air flow measurements – Outdoor air

Hot wire traverse
Outdoor air measurements

- Minimum velocity is an important criterion
- Outdoor air dampers generally designed for a maximum of 1000 fpm fully open
- Systems with low outdoor air fractions may require measures at very low velocities
 - Flow grid minimum velocity > 250 fpm
 - Vane anemometer > 50 fpm
 - Hot wire anemometer > 5 fpm
Building a Shroud Doesn’t Help
Thank You!

From National Comfort Institute

For additional information call: 800-633-7058
For the latest training schedule: NCIlink.com/ClassSched

Sign up for our FREE magazine: